3 The Player Involvement Model

Overview of the Model

The previous chapter identified the key challenges to a better understanding of immersion and presence. To address these challenges, I will first establish a better understanding of player involvement. Involvement is a prerequisite to the experience of higher-order cognitive processes such as presence or immersion in much the same way that attention is a prerequisite of involvement. It therefore makes sense to establish a thorough model of involvement before going on to attempt a formulation of what is essentially a preconscious experiential phenomenon that combines multiple dimensions of involvement.

Chapter 2 described the scarcity of comprehensive conceptual frameworks that can be employed to understand the multiple facets of player involvement and, consequently, immersion in digital games and virtual worlds. Having reached this conclusion in my initial research, I felt it was important not only to relate the theoretical works on the subject to observations drawn from my own experience in games, but to observe the views of other players through personal participation in the same game world as the participants and, more specifically, by way of a series of focus groups and in-depth interviews with them. This chapter gives a brief outline of the research process that contributed to the creation of the player involvement model along with the theoretical considerations that factored into its structure and an overview of the model's constituent parts.
Chapter 3

The Research Process

The player involvement model presented in this chapter is the product of three years of qualitative research, focusing primarily on two popular and contrasting massively multiplayer on-line games (MMOGs): World of Warcraft (Blizzard Entertainment, 2004), the prototypical massively multiplayer on-line role-playing game (MMORPG); and Planetside (Sony Online Entertainment, 2003), a massively multiplayer on-line first-person shooter (MMOFPS). A qualitative perspective was adopted due to the intensely experiential and richly varied nature of the object of inquiry, following other researchers of virtual worlds such as T. L. Taylor (2006), Constance Steinkuehler (2005), and Lisbeth Klastrup (2004).

The primary research methods were extended personal participation in the two selected game environments, numerous focus groups, and in-depth interviews with twenty-five experienced players recruited in-game. These techniques were supported by discussions with academics studying virtual worlds, participation in on-line forums, monitoring of player blogs, and viewing player-made machinima.

The interviews, which provided the core data for analysis, were semi-structured and extended over two sessions, each up to two hours long. Each interview took place within the virtual environment of the game about which the participant was being interviewed, in order to further stimulate their memory and to bring their relationship to the game world to the fore. The interviews followed a loosely structured schedule with a focus always placed on experiences related to immersion.

The data was coded and analyzed between interviews, with the interview schedule updated in the intervening period to reflect input from the participants. Over time, a number of strong themes emerged from the interviews, and the player involvement model is based on these salient features of the data.

Structure of the Model

When I analyzed the qualitative research data gathered for this project, it became clear that it was important to make a distinction between aspects of a game which engaged players in the moment of playing from aspects that attracted players to the game initially and kept them returning to the
game over time. I refer to these aspects as *micro-involvement* and *macro-involvement* respectively. Let us look at a brief example of what each of these covers.

In my own experience, I find that what involves me deeply in *Empire: Total War* (Creative Assembly, 2009) are its on-line multiplayer battles. Here you select and control an eighteenth-century army in a real-time battle against a human opponent. A crucial part of the game is building one's army with the limited funds set by the host of the battle. Next, all players deploy their armies in a stipulated zone and the game starts in earnest. The plans and choices I make during the game, my control of the individual units on the battlefield, and my attempts at outmaneuvering my opponent are all examples of aspects of the game which involve me deeply during gameplay. These aspects of involvement in the moment of play are all part of the micro-involvement phase.

When I turn off the PC and go to bed, I inevitably start thinking of different army configurations and other ways to use certain units. Like many gamers, I run through what happened in my recent battles and why certain tactics failed and others succeeded. In *Empire: Total War*, the campaign mode starts in 1700 and allows players to manage one of the many factions in the game in a bid to become the strongest empire in the world at the time. Plans for furthering one's conquest and dealing with deteriorating relations with neighboring powers are formulated not just during gameplay but also during off-line thinking about the game, such as when one is riding the train or in other situations which do not require one's full attention. I refer to this form of ongoing motivation to interact with the game and the off-line thinking that fuels it as *macro-involvement*.

The player involvement model identifies six dimensions of involvement, each considered relative to two temporal *phases*: the macro and the micro. The six *dimensions* correspond to the clusters of emphasis derived from analysis of the research data. The dimensions are experienced not in isolation but always in relation to each other, the separation being made here for the sake of analysis. Dimensions are experienced unconsciously during the interpretative and communicative process and therefore play an important role in noticing and directing attention toward aspects of a given reality. In the case of the player involvement model, this reality is made up primarily of stimuli originating from the game.
environment, but at times the stimuli originate from the surrounding physical environment.

The dimensions should be seen as layered and transparent in nature. This means that one dimension influences how another is perceived and interacted with. The dimensions are transparent in that their layering does not occlude what lies beneath, but changes the perception of both. The dimensions of the player involvement model similarly combine in the game-playing experience, with the inclusion or exclusion of a dimension affecting how others operate.

The six dimensions of the player involvement model are kinesthetic involvement, spatial involvement, shared involvement, narrative involvement, affective involvement, and ludic involvement. The following chapters will elaborate at length on the macro and micro phases of each of these dimensions, but this chapter will give a brief outline of each.

Macro-involvement

As Karolien Poels (2009) notes, research on game experiences has focused primarily on the moment of gameplay. There are, however, a number of
factors that shape the player's opinion and disposition toward the game that derive from thoughts, plans, feelings, and expectations both prior to and following the game experience. Examples of these out-of-game forms of involvement were common in the accounts given by participants in my research, and included the feeling of belonging to a close-knit community, the formation of strategies and plans that could be tried in upcoming sessions, interest in continuing to unravel a game narrative or exploring a newly discovered part of the game world, the ambition to develop one's abilities and outperform others, or simply the desire to feel surrounded by a beautifully rendered world of a desired setting. This off-line involvement is described by the macro phase of the model. It concerns issues of motivations and sustained engagement with digital games through the long-term (as opposed to immediate) aspects of the six dimensions of involvement that make up the model.

Poels et al. (2010) conducted two focus group studies exclusively concerning what they call “postgame experiences.” Their findings were very much in line with my own. Their participants reported a variety of forms of postgame involvement that could be mapped onto the dimensions of the player involvement model. Although Poels et al. were researching a broader range of experiences than those directly related to involvement, their findings corroborate the importance of not limiting the analysis of involvement to the game-playing session itself.

Postgame experiences can range, for example, from the sense of accomplishment derived from completing an elusive game goal (ludic involvement) to the satisfying feeling of recalling impressive feats of avatar control (kinesthetic involvement) or a sense of inner peace following travels in aesthetically moving surroundings (spatial and affective involvement).

Pregame experiences are also important to consider because they give a context for the individual game-playing session. It is harder to model this form of involvement since it is guided less by the formal aspects of the game than is the case in the micro phase, but this is not to say that the formal characteristics of games are irrelevant for macro-involvement. As we will see in the exposition of the dimensions in upcoming chapters, off-line involvement can also be about coming up with winning strategies or planning how to develop one's character as she levels up (ludic involvement), wondering how the designed narrative surrounding a particular character will develop (narrative involvement), or working on a community Web site for one's clan or guild (shared involvement).
Both postgame and pregame experiences are covered by the macro phase of the player involvement model. Since this phase exists largely as a contextualization of the actual moment of gameplay, in the following chapters I will address more general issues surrounding involvement in the particular dimension in question, as a way to frame the discussion of actual play and the corresponding micro-involvement in the rest of each chapter.

The macro phase of the player involvement model addresses longer-term motivations as well as off-line thinking and activities that keep players returning to a game. Examples of this were common in the responses of participants in my research. They often commented on the plans and strategies they formed during work hours, in conversation with others, or through on-line resources and community sites. Other participants described the construction of stories featuring their in-game characters, and the majority expressed the importance of persisting social bonds to their prolonged engagement with a game.

Micro-involvement: In Ludo Res

We now shift our attention from the broader motivations that attract players to games to the moment-by-moment engagement of gameplay described by the micro-involvement phase of the player involvement model. A crucial first step for forming a conceptual toolkit that will help in analyzing and discussing game experience is to make a distinction between the general direction of attention toward a medium and the form of active involvement prevalent during gameplay.

All forms of representational media require the investment of attention in order to interpret them. Without attention there can be no involvement. The term attention generally refers to the concentration of mental resources toward some particular stimulus or stimuli. This involves an assortment of skills, processes, and cognitive states that interact with each other and with other brain processes (Fan et al., 2002). Attention underlies everything that we do, and plays a crucial role in perception, thinking, learning, and performance. When the brain carries out activities simultaneously, the coordination of their execution also involves attention.

Most of the time, we are not aware of the way in which attention affects our performance or behavior. It becomes more apparent when, for example, we are trying to comprehend complex information, learn a new task, or
engage in activities that are unfamiliar to us. In such situations, the information required to solve the task or manage the situation can be greater than what our attentional capacity system can handle (Baddeley and Hitch, 1994; Sturm and Willmes, 2001). As a result of this innate capacity limit of the human information processing system, our attentional resources are allocated to those aspects of a task most relevant to us at that particular time. Learning a particular task requires the ability to attend to the relevant stimuli, and as the information is transferred to long-term memory storage and is learned, the behavior required by the task becomes internalized and automatic. The learned task will thus require less attentional resources, freeing resources that now can be allocated to new tasks.

Although attention is a key prerequisite for involvement, it does not adequately describe the experience. It is helpful, therefore, to differentiate between general attention directed toward a medium and the active input from the player. Watching a movie does not require the same kind of involvement as game playing or navigation of a virtual environment, and treating them as experiential equivalents ignores the specific qualities of each experience. This situation has, at times, caused difficulties within game scholarship when analytical frameworks from other disciplines have been imported without modification to the study of games. Espen Aarseth's (1997) Cybertext focuses on the different relationships between the readers of literary work or film viewers and what he calls the “operator” of a cybertext. The cybertext is characterized by ergodicity: the operator, or in our case the player, must provide active input in order for the text to come into being. The player reconfigures the constitution of the text through her input. Ergodicity thus expresses the active participation of the player within the cybernetic circuit (Dovey and Kennedy, 2006) that is formed by the game’s hardware, the representational layer, and the underlying rules and environmental properties.

Ergodic forms of engagement, such as gameplay, are not limited to direct input. The effort implicit in the ergodic is first and foremost a disposition and readiness to act, not merely the action of pressing a button or pulling a joystick. For example, one of the pleasures of strategy games is the mental effort required to come up with a particularly brilliant plan or move. During very involving games, these periods of seeming inactivity can be long, but it would make little sense to label such periods as not
being part of the game or as non-ergodic, since for these members of the
game family, this is exactly what the game is all about.

This consideration is also applicable to action games. In *Red Orchestra*
(Tripwire Interactive, 2006), a first-person shooter game, for example, a
player is lying on the floor of a three-story ruined building, covering a
street with a sniper rifle. There are no enemies in sight, but the sniper
expects them to emerge in the near future as the street leads to one of the
main game objectives on the map. Long minutes of inactivity result from
such a wait, yet the sniper’s job is often defined by this sort of patient
waiting. Although there is no direct input on the part of the player, the
readiness to act requires her to stay alert. At any second someone might
emerge around that street corner, and the sniper must be ready to deal
with him, or the fruits of her labor will go to waste.

Consulting an in-game map and planning a perilous journey from
Ratchet to Feathermoon in *World of Warcraft*’s (Blizzard Entertainment,
2004) Azeroth is also a significant form of ergodicity. Even though
no action is apparent on the screen, game-related effort is still being
invested through the player’s thoughts. Game involvement is indicated
not simply by the direct input of the player or the display of such an
action on the screen, but by the player’s *cognitive* effort, which is not
necessarily registered as a form of input. Planning a move in a
strategy game clearly requires effort and is thus an important aspect
of ergodicity, as is the readiness to act discussed in the *Red Orchestra*
example above.
The Dimensions of the Player Involvement Model

Kinesthetic Involvement
Kinesthetic involvement relates to all modes of avatar or game piece control in virtual environments, ranging from learning controls to the fluency of internalized movement. This dimension of involvement requires more conscious attention when the controls make themselves present, either because the player hasn’t fully mastered them or because a situation demands a complex sequence of actions that are challenging to the player. The freedom of action allowed and the difficulty of the learning curve of the controls involved have a major influence on the player’s involvement in the game environment. Kinesthetic involvement is discussed in chapter 4.

Spatial Involvement
The spatial involvement dimension, which is the focus of chapter 5, concerns players’ engagement with the spatial qualities of a virtual environment in terms of spatial control, navigation, and exploration. It accounts for the process of internalizing game spaces that is a powerful factor in engaging players and giving them the sense that they are inhabiting a place, rather than merely perceiving a representation of space.

Shared Involvement
Shared involvement, the subject of chapter 6, deals with the engagement derived from players’ awareness of and interaction with other agents in a game environment. These agents can be human- or computer-controlled, and the interactions can be thought of in terms of cohabitation, cooperation, and competition. Shared involvement thus encompasses all aspects relating to being with other entities in a common environment, ranging from making collaborative battle strategies to discussing guild politics or simply being aware of the fact that actions are occurring in a social context.

Narrative Involvement
Narrative involvement refers to engagement with story elements that have been written into a game as well as those that emerge from players’ interaction with the game. It addresses two interrelated dimensions of narrative in games: the narrative that is scripted into the game and the narrative
that is generated from the ongoing interaction with the game world, its embedded objects and inhabitants, and the events that occur there. Narrative involvement is discussed in chapter 7.

Affective Involvement

The affective involvement dimension encompasses various forms of emotional engagement. Emotional engagement can range from the calming sensation of coming across an aesthetically pleasing scene to the adrenaline rush of an on-line competitive first-person-shooter round to the uncanny effect of an eerie episode in an action-horror game. This dimension, which is the focus of chapter 8, accounts for the rhetorical strategies of affect that are either purposefully designed into the game or precipitated by an individual player's interpretation of in-game events and interactions with other players.

Ludic Involvement

Chapter 9 discusses the ludic involvement dimension, which expresses players' engagement with the choices made in the game and the repercussions of those choices. These choices can be directed toward a goal stipulated by the game, established by a player, or decided by a community of players. Decisions can also be made on the spur of the moment without relation to any overarching goal. Seasoned game players understand that well-balanced game systems emphasize the opportunity cost of any particular action taken. Without repercussions, actions lose their meaning.

Applying the Model

Applying the player involvement model to practical analysis does not require all the dimensions to be equally relevant to a specific game; for example, the intensity and complexity of spatial involvement in *The Elder Scrolls IV: Oblivion* (Bethesda Softworks, 2006) or *Half-Life 2* (Valve Software, 2004) far surpass that found in *Pong* (Atari, 1972). This does not mean that space does not play a role in a game like *Pong*, but that the potential breadth of involvement with this dimension of the game is severely limited when compared to game environments that at times represent whole regions in minute detail.
The outer edge of each triangular segment in the model represents full attentional resources directed toward that dimension of involvement. In this state, players will be attending primarily to that one dimension. The narrowing triangles of each dimension in the micro phase represent a process of internalization, where a move toward the center requires incrementally less attentional resources directed toward that dimension of involvement. With more attentional resources freed, players will attend to multiple dimensions simultaneously. The further toward the center players move, the more dimensions may be simultaneously attended to. The direction of attention tends to change frequently and fluidly, with multiple dimensions being combined and recombined as involvement proceeds.

In the kinesthetic involvement dimension, conscious attention is generally dedicated to learning the controls of the game during a player’s early sessions of playing. This includes following on-screen instructions relating to avatar control or looking up and reassigning keys and buttons to the desired controls and then testing how these feel in the game. As players find the control setup that feels most intuitive to them or get used to the one supplied by the game, their conscious attention moves away from the basic controls to other aspects of the game. When a particularly demanding maneuver is required, conscious attention toward controls might resurface until the maneuver is learned, and so on. Since, as discussed above, humans have a limited attentional capacity, devoting more conscious attention to one of the dimensions leaves less that can be invested in others. As players internalize the controls, they can devote more attentional resources to understanding the layout of the city they are in, or to making plans for developing their character’s attributes, and so on. In such cases, we can say that the player has “internalized” the controls: she has reached a level of kinesthetic involvement that requires little or no conscious effort.

As the player involvement model deals with an intensely subjective experiential phenomenon, there is a constant blending of dimensions and a shift from conscious to internalized attention directed to each dimension and cluster of dimensions. The challenge in building a foundation and a register to convey such a dynamic phenomenon in a diagrammatic and textually descriptive form is that we have to keep in mind the constantly fluctuating nature of experience. The model proposed here thus has a modular structure, with dimensions combining across the diagram in a
fluid manner during gameplay. It is also scalable, in the sense that each of the dimensions represents a broad category of experience that can be further analyzed and fleshed out with constituent components. Each dimension will be described in more detail in the coming chapters.

General Considerations: The “Magic Circle”

The popular game studies concept of the magic circle (Huizinga, 1955) has not been included in the model. Because this concept is used widely within game studies and has an important bearing on the nature of the game experience, it is worth a brief digression to address the concept and to explain why I have excluded it from the model.

Initially coined by Huizinga (1955) in *Homo Ludens*, the concept of the magic circle has been widely adopted by game studies theorists (for example, Salen and Zimmerman, 2003; Juul, 2005) to articulate the spatial, temporal, and psychological boundary between games and the real world. As Huizinga (1955) describes the magic circle:

All play moves and has its being within a play-ground marked off beforehand either materially or ideally, deliberately or as a matter of course. ... The arena, the card-table, the magic circle, the temple, the stage, the screen, the tennis court, the court of justice, etc., are all in form and function play-grounds, i.e., forbidden spots, isolated, hedged round, hallowed, within which special rules obtain. All are temporary worlds within the ordinary world, dedicated to the performance of an act apart. (10)

Huizinga emphasizes this notion of play as “an act apart” to the extent that he describes it as a necessary condition for play to occur. He conceives of play as a “stepping out of real life into a temporary sphere of activity with a disposition all of its own” (9). According to Huizinga, all types of play, whether engaged in by humans or animals, have some form of rules, and it is the adherence to and upholding of these rules that structures and sustains the magic circle (12).

Although Huizinga sees play as separate from the real, his principal argument rests on proving that the element of play pervades (and even precedes) all aspects of human culture. The apartness of play is the apartness of ritual, which, Huizinga points out, shares all of the characteristics of play: “Formally speaking, there is no distinction whatever between marking out a space for a sacred purpose and marking it out for purposes
of sheer play. The turf, the tennis court, the chess board and pavement-hopscotch cannot be distinguished from the temple or the magic circle” (20).

In *Rules of Play*, Salen and Zimmerman (2003) have adopted the concept of the magic circle to discuss the relationship between games and the “real world”:

The fact that the magic circle is just that—a circle—is an important feature of this concept. As a closed circle, the space it circumscribes is enclosed and separate from the real world. ... Within the magic circle, special meanings accrue and cluster around objects and behaviors. In effect, a new reality is created, defined by the rules of the game and inhabited by its players. (95–96).

Salen and Zimmerman emphasize the importance of the bounded nature of games by comparing idle toying with an object, what Cailliois (1962) has referred to as *pajdia*, with the formal rule-based activity, called *ludus*, of a game such as tic-tac-toe. Free play thus becomes game when the structured frame of the magic circle is imposed upon it. Salen and Zimmerman go on to argue that the magic circle surrounding games can be either open or closed, depending on the perspective, or “schema,” one views them from. Games can be viewed as a system made up of rules, as a form of play activity, and as a form of culture. In the first case, games are considered as closed systems completely separate from the external world. In the second case, they can be both open and closed, since this depends upon whether or not we bracket the gameplay experience from the rest of the player’s lived history. Finally, games as culture are open systems with a permeable boundary.

Salen and Zimmerman sideline the central point of Huizinga’s work when they argue for an unbounded perspective on the cultural schema of games. Proving that cultural constructions are playlike and thus set aside from ordinary life is exactly Huizinga’s central argument. Since the concept of the magic circle is at the heart of Huizinga’s perspective, one cannot adopt it without also taking on its user’s principal argument. The confusion is compounded by the fact that Salen and Zimmerman seem to be using Huizinga in a positive manner, while at the same time going against the main thrust of his argument without forwarding a coherent critique of it. Once we adopt the term, we also take on the ontology that places a distinct division between reality/seriousness/utility and play/nonseriousness/gratuitousness (Ehrmann, 1968).
Ehrmann (1968) criticizes Huizinga for conceiving of “ordinary life” or “reality” as a stable entity that can be compared, contrasted, and measured against play. Huizinga takes for granted the existence of a “reality,” perpetually escorted by the hesitant presence of quotation marks, that can, in some unspecified manner, be divorced from culture and/or play. But, as Ehrmann argues, there is no reality outside of the culture that constructs it:

The problem of play is therefore not linked to the problem of “reality,” itself linked to the problem of culture. It is one and the same problem. In seeking a solution it would be methodologically unsound to proceed as if play were a variation, a commentary on, an interpretation, or a reproduction of reality. To pretend that play is mimesis would suppose the problem solved before it had even been formulated. (33–34)

Reality cannot be bracketed by closed or open circles, even if we could argue that such bracketing is logically possible. Reality does not contain play; like any other sociocultural construction, play is an intractable manifestation of reality. A consideration of games—whether from the perspective of the game as an object or as an activity, or the game’s role in the wider community—is a consideration of reality. As Taylor (2006) has argued, such a perspective ignores the grounded analysis of these objects and activities while sideling the fact that they are very much part and parcel of everyday reality.

Separation in Space

Jesper Juul (2005) also adopts the concept of the magic circle, but he differentiates between its status in the context of what he calls physical games, like football or tennis, and in digital games. He applies the magic circle in a more specific formal capacity in terms of game space. According to Juul, physical games and board games take place in a space which “is a subset of the larger world, and a magic circle delineates the bounds of the game” (164). The boundary can be made up of spatial perimeters and is often also defined temporally. The game can be limited to a specific area such as a tennis court or a fencing piste, or woven into the everyday world, as in live-action role-playing games (LARPs), treasure hunts, and other forms of pervasive gaming. Here the spatial perimeter is less defined than the temporal one. The spatial and temporal boundaries of the magic circle in physical games are upheld by a social agreement clarifying the
interpretation and validation of actions, utterances, and outcomes; in other words, the rules.

But in the case of digital games, where is the fabled circle? Juul (2005) traces the magic circle of digital games through the hardware devices that enable their representation: “the magic circle is quite well defined since a video game only takes place on the screen and using the input devices (mouse, keyboard, controllers) rather than in the rest of the world; hence there is no “ball” that can be out of bounds” (164–165).

He goes on to compare the magic circle in physical games with that in digital games, based on the spatial qualities of each. In physical games, the magic circle separates real-world space from game space, while in the case of digital games the magic circle separates the fictional world of the game from what Juul calls “the space of a game.” Juul bases this claim on an assumption that “the space of a game is part of the world in which it is played, but the space of a fiction is outside the world from which it is created” (164, his italics). In the case of digital games, the magic circle's function as a marker where rules apply loses its analytical relevance. In physical games, the distinction is needed because the game rules are upheld socially, and actions that take place within the marked area of the game are interpreted differently from actions outside that area. On the other hand, in most digital games the distinction is void because the only on-screen space that one can act in is the navigable space of the virtual environment. The stadium stands in FIFA 2009 (EA Sports, 2008) or the space outside the combat area in Battlefield 1942 (Digital Illusions, 2002) cannot be traversed; they are merely a representational backdrop. The role of the magic circle as spatial marker is thus redundant when applied to digital games.

Psychological Separation

More problematically, the concept of the magic circle has also been applied to the experiential dimension of gameplay. Within game studies it is often taken as a given that gameplay involves entering a particular experiential mode that was described by Bernard Suits (1978) as the “lusory attitude.” The lusory attitude is closely tied to the notion of the magic circle because it is similarly built on the assumption that players voluntarily step into an attitude which is apart from ordinary life. As Suits describes this experiential mode, which occurs only during game playing: “The attitude of the
game player must be an element in game playing because there has to be an explanation of that curious state of affairs wherein one adopts rules which require one to employ worse rather than better means to reach an end” (52).

According to Suits, then, we know that players are engaged in a game when they purposefully choose to engage with artificial constraints defined by the rules in order to attain a specified goal. In golf, for example, the most efficient means of sinking the ball would be to pick it up, walk over to the hole in question, and simply place the ball in it. Using a metal club to try to get the ball in the hole is an inefficient means of achieving the same goal. But this cornerstone of Suits’s definition does not hold for digital games. A number of members of the game family that are simulated on a machine—that is, digital games—do not allow players to take the types of shortcuts that Suits describes. In fact, in a game of digital golf, players have no choice but to follow the rules encoded into the game and thus follow the inefficient, in the sense of rule-restricted, course of action available to them, which Suits ascribes to work. There is no need for players to make an effort to follow the rules, since the rules (or at least some of them) are coded into the game and thus are upheld by the machine. Suits’s conceptualization of games thus only captures some members of the game family and does not, for example, account adequately for digital games.

Suits’s notion of the lusory attitude as a defining element of games creates a problematically circular argument, essentially claiming that games are activities which require a lusory attitude and that the lusory attitude is an experience which occurs when playing a game. If we had to follow Suits’s logic, the player’s inability in a number of digital games, particularly single-player ones, to voluntarily adopt inefficient means in playing them means that we cannot enter into a lusory attitude, and thus such activities are not games.

As Thomas Malaby (2007) points out, we cannot logically use play to refer to both a mode of human experience and a form of activity. In other words, we cannot say that when we engage with a game we are entering a particular experiential mode (the lusory attitude, for example) determined by the very act of engaging with the game. As T. L. Taylor (2006) argues, these forms of experientially deterministic arguments oversimplify the complexity of game engagement:
While the notion of a magic circle can be a powerful tool for understanding some aspects of gaming, the language can hide (and even mystify) the much messier relationship that exists between spheres—especially in the realm of MMOGs. ... It often sounds as if for play to have any authenticity, meaning, freedom, or pleasure, it must be cordoned off from real life. In this regard, MMOG (and more generally, game) studies has much to learn from past scholarship. Thinking of either game or nongame-space as contained misses the flexibility of both. (152)

The objection to the magic circle as a form of experiential bracketing has been particularly strong from researchers conducting qualitative studies with players. Ethnographic work by Taylor (2006), Malaby (2007), Copier (2007), and Pargman and Jakobsson (2006) indicates that such a separation is not found in the situated study of gamers:

Problems with using the concept of the magic circle as an analytical tool have made themselves known now and again. These problems become especially clear when the researcher in question has actual empirical material at hand that he or she without much success tries to understand by applying the dominant paradigm of the separateness of play. (Pargman and Jakobsson, 2006, 18)

My own research findings are in line with this view. In analyzing the research data, I found no indication that players enter into an experiential mode that is specific to games. The dimensions of the player involvement model give a more thorough and analytically productive description of game experience without loading it with a priori, prescriptive assumptions about its nature.

Fun?

Huizinga's conception of play as a bounded, ideal space gives rise to another problematic notion that has been inherited by game researchers: an equivalence between gameplay and fun. Indeed, he argues that fun defines the essence of play: "Now this last-named element, the fun of playing, resists all analysis, all logical interpretation. As a concept, it cannot be reduced to any other mental category. ... Nevertheless it is precisely this fun-element that characterizes the essence of play" (Huizinga, 1955, 3). This seems like an obvious assertion to make: people play games because they enjoy them (Crawford, 2003; Koster, 2005; Salen and Zimmerman, 2003). After all, if games were not fun, why would people play them? There are two problems with this line of reasoning.
First, as Malaby (2007) argues, associating games with fun imbues them with a normative status that ignores the complex and varied experiential states that make them engaging. This does not mean that games are not fun; rather, fun is not an inherent characteristic of games, as has been most generally taken to be the case. As the recent work of Dibbell (2006), Malaby (2007), and Taylor (2006) has shown, contemporary developments in on-line gaming are emphasizing the problematic nature of this assumption. Fun does not denote a specific experiential phenomenon, but spans a whole series of emotional states that vary according to context and individual. As Taylor (2006) states, pinning motivation for game playing on the notion of fun risks missing important aspects of the game experience:

The notion that people play differently, and that the subjective experience of play varies, is central to an argument that would suggest there is no single definitive way of enjoying a game or of talking about what constitutes “fun.” We need expansive definitions of play to account for the variety of participants’ pleasurable labor and activity. Those definitions must encompass both casual and hard-core gamers. Suggesting that games are always simply about “fun” (and then endlessly trying to design that fun) is likely to gloss over more analytically productive psychological, social, and structural components of games. (70)

Taylor emphasizes the inclusion of labor within the gaming activity, disrupting the common opposition between games and work. As Steinkuehler (2005), Taylor (2006), and Yee (2006a, 2006b) point out, MMOG players often spend extended periods of time engaging willingly in activities which even the players themselves view as tedious or laborious.

A second problem with the notion of fun is that it is too vague an experiential category to be of analytical use. Fun merely implies a clustering of positive emotions surrounding an activity; it does not describe what those emotions are or where they derive from. The concept is as unhelpful to the designer as it is to the analyst. It is more productive to focus on a notion of engagement or involvement, which has less normative implications than the notion of fun while allowing further subdivision into constituent elements in a way that fun cannot. Though it is a catchall term that is perfectly adequate for popular parlance, fun lacks the qualities of an analytically productive term.

Huizinga’s (1955) claim that fun cannot be further broken down analytically is merely an acknowledgment of the vague function it fulfills in
language. Huizinga's error is to argue that this vague experiential form is the essence of play, transferring the fuzziness of the concept of fun to the definition of play. The claim of this book is that the experience of gameplay can, in fact, be further analyzed, but this is only possible if we avoid labeling the experience with a priori concepts such as fun or the magic circle. The coming chapters aim to do just that: give a detailed description of the various dimensions of involvement that are present both surrounding and during the moment of gameplay.